

The cost-effectiveness of extending the seasonal influenza immunisation programme to school-aged children: the exemplar of the decision in the United Kingdom

Marc Baguelin^{1,2}

¹Public Health England ²London School of Hygiene & Tropical Medicine

Stopping the transmission of influenza and protecting the most vulnerable

Global Annual Incidence per 100,000 of severe influenza in children (meta analysis)

	Incidence (95%CI)					
Developing countries						
<6 mo. old	290(200 - 410)					
0-11 mo. old	280 (190 - 410)					
0-59 mo. old	170 (110 - 250)					
Industrialized countries						
<6 mo. old	340 (230 - 500)					
0 – 11 mo. old	230 (180 - 300)					
0 – 59 mo. old	120 (90 - 170)					

Current annual seasonal trivalent inactivated vaccine (TIV) programme in the UK

- All high risk groups under 65 years
- All 65+ year olds
- Problems:
 - efficacy of TIV in elderly and the very young is poor
 - most vulnerable groups are the elderly and the very young

And the situation in the UK

Table 4 Influenza-attributable GP consultations and hospitalisation rates by age, entire population and ratio of consultations to admissions (95% confidence intervals).

Age	GP consultations annual rate per 100,000 ($\pm 95\%$ CI)			Hospitalisations annual rate per 100,000 (±95% CI)			Ratio GP consultations: hospital admissions $(\pm 95\% \text{ CI})$
	Flu A	Flu B	All Flu	Flu A	Flu B	All Flu	All Flu
<6 m	4829 (233)	2532 (195)	7361 (304)	192 (9)	138 (8)	330 (12)	22.3 (22.1–23.6)
6 m-4 y	3916 (137)	2174 (101)	6090 (170)	149 (4)	26 (3)	175 (5)	34.9 (33.5–36.3)
5 y-14 y	2131 (62)	1744 (88)	3875 (107)	12 (0.8)	2 (0.2)	14 (0.8)	270 (254–288)
15-44 y	1327 (25)	552 (24)	1878 (35)	12 (0.3)	0 (0)	12 (0.3)	160 (155—164)
45-64 y	1468 (26)	361 (21)	1829 (34)	22 (0.6)	5 (0.2)	27 (0.6)	68.1 (66.1—70.0)
65+ y	582 (26)	0 (0)	582 (26)	63 (3)	0 (0)	63 (3)	9.2 (8.6-9.8)
All Ages	1496 (17)	660 (16)	2156 (23)	31 (0.6)	4 (0.2)	34 (0.6)	62.9 (61.6–64.2)

Cromer D, et al., J Infect (2013)

What to do? the British philosophy

- Public health philosophy based on utilitarianism
- A government should use public resources to maximize the well being of the society
- Problem: how to quantify the "well being" when dealing with a public health intervention?

Quantifying the public health impact of an intervention

- Need a measurement which takes into account
 - 1. The change in years of life
 - 2. The change in term of quality of life (e.g. lost of mobility, pain...)
- The notion of Quality Adjusted Life Years (QALY) has been chosen as a measure in the UK
- One year of perfect health is equal to one QALY while death is 0 QALY
- Impact of intervention assessed using ICER measured in £/QALY
- 20000£/QALY threshold for cost-effective interventions

Extensions to current programme

- Extend to low-risk:
 - 2-4 years
 - 50-64 years
 - 5-16 years
 - 2-4 & 50-64 years
 - 2-16 years
 - 2-16 & 50-64 years
 - 2-64 years
- Coverage assumed to be 50% in low-risk groups

Schematic of approach

Epidemic parameters

- Reproduction number
- Incubation period
- Infectious period
- Susceptibility profile
- Mixing patterns

•

Data

- RCGP
- Swabbing
- Serology

Vaccine assumptions

- Coverage
- By age & risk
- By year & strain
- Efficacy

Epidemic projections

Outcomes

- Risk and age:
 - CFR
 - Hospit.
 - QALY loss

• . .

Costs

- Hospitalisation
- Vaccine
- Delivery
- ...

Projections in relevant units, & CEA

Mathematical models of infectious diseases

- Compartmental models
- Based on the SEIR structure
- Include age structure and risk groups
- "Easy" to produce a model, difficult to fit to surveillance data in the case of influenza

Severity pyramid ►ILI ► different possible pathogens

Only the top is observed by Dead surveillance Hospitalized Medically attended **Symptomatic** Knowledge fundamental Infected for modelling

H3N2

The problem of scale: nowcasting & forecasting using aggregate data

- Need to track depletion of susceptibles (i.e. infections)
- The data (i.e. # cases, or GP consultations, or deaths) gives us just a fraction of the infections
- What fraction?
 - i.e. what fraction of infections are reported?

Complex mathematical and statistical problem

- Evidence synthesis where mathematical modelling is used to linked different data sources
- Breaks down into elementary processes
- Bayesian approach to estimate uncertainty
- Dynamical transmission model and probabilistic observation model

Assessing Optimal Target Populations for Influenza Vaccination Programmes: An Evidence Synthesis and Modelling Study

Marc Baguelin^{1,2}*, Stefan Flasche^{1,2,3}, Anton Camacho^{1,2}, Nikolaos Demiris⁴, Elizabeth Miller¹, W. John Edmunds^{1,2}

Linking infection risks with disease risks

- Annual cases of infection by strain & age group
- Annual number of outcomes (e.g. hospit)
- Derive risk ratios
- Problems:
 - Age groups not always identical assume outcomes distributed by pop size
 - Some years very low (zero) infections estimated
 - Labbase (burden) does not distinguish H1 and H3
 - Derived risk ratios from years when relatively large number of cases (and mostly 1 strain of flu A)
 - A H1N1: 2000/1 and 2007/8
 - A H3N2: 2003/4, 2004/5 and 2006/7
 - B: 2000/1 and 2005/6

Costs & QALYs

- Costs of vaccination from DH
- NHS reference costs for treatment
- Non-fatal QALYs lost from literature
- Fatal cases assumed to lose average risk and age-specific life-expectancy adjusted for average age-specific QoL (from RCGP)

Kind P et al. BMJ 1998;316:736-741

Incremental cost-effectiveness

- Rank scenarios by increasing cost
 - 2-4 years
 - 50-64 years
 - 5-16 years
 - 2-4 & 50-64 years
 - 2-4 & 5-16 years
 - 2-4 & 5-16 & 50-64 years
 - 2-64 years
- Remove the 'dominated' ones (more money, less QALYs saved
- Compute incremental CEAC (cost-effectiveness acceptability curve)
- Stop until not CE anymore

Are we vaccinating the kids to protect their grandparents?

Ethical issue with recommending a treatment for the benefit of others

Death associated QALD incremental on current

Cost-effectiveness of vaccinating children

- Cost-effective to vaccinate school children for their own benefit (i.e. ignoring benefits to other groups)
 - ICER=8155 £/QALY
 - Mean Net Benefit £107m [90%CI: -£34m £390m]
 - Burden exclusively in term of saved influenza episodes and hospitalisations

And finally the decision!

Flu vaccines for all children

COMMENTS (511)

All two to 17-year-olds in the UK are to be offered annual flu vaccinations.

If 30% take up the offer, there will be 11,000 fewer hospitalisations and 2,000 fewer deaths each year, the chief medical officer for England says.

The children will be immunised using a nasal spray rather than an injection, starting in 2014 at the earliest

Nasally introduced flu vaccine

The future

- The implementation of the programme has started in 6 pilot areas this season for the 4-11, and nationally for the 2-3
- It will be extended next year to more age groups

Main improvements / weaknesses

Fitting:

- Serology
- Serial fitting
- (more swabbing data)

Burden

- Deaths & life-expectancy (vaccinate everyone?)
- Linking infection & burden (different data sources)
- Low activity era: will this continue?
- Transmission
 - Model suggests that children play a key role
 - Cluster randomised trials (e.g. Loeb et al.) support this, but others have argued against

Acknowledgments

- Stefan Flasche, Anton Camacho, John Edmunds (London School of Hygiene and Tropical Medicine)
- Nikos Demiris (Athens University of Economics and Business)
- Liz Miller, Richard Pebody, Maria Zambon, Joanna Ellis, Albert-Jan Van Hoek, Julia Stowe, Pauline Kaye (Public Health England)
- Douglas Flemming (Royal College of Practitioner)
- Tom Barlow, Peter Grove (UK Department of Health)

Increment [®]	ICER[[£/QALY]]	% №£20,000/QALY ፻	% №£30,000/QALY ?	Net benefit n EM	95% Tredibility Interval 2
Current B > 22-43y2	2647?	100?	1002	71.42	(10.433247.0)2
2-43/2->25-163/2	1611?	1002	1002	372.82	(79.4 @ 1242.9)2
5-161y1 -> 12-16y1	3494?	100?	1002	55.7🛭	(7.23208.2)?
₃y:>:22-16y:2&50-64y:?	8458?	86?	952	75.22	(-14.93327.9)2
y ® \$50-64y ®> ®2-64y®	93302	81?	932	188.72	(-64.433919.9)2
?					